If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+21x-81=0
a = 1; b = 21; c = -81;
Δ = b2-4ac
Δ = 212-4·1·(-81)
Δ = 765
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{765}=\sqrt{9*85}=\sqrt{9}*\sqrt{85}=3\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{85}}{2*1}=\frac{-21-3\sqrt{85}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{85}}{2*1}=\frac{-21+3\sqrt{85}}{2} $
| 3=g19 | | 3(2a=1)-a=1a+1 | | 2/3-2x=x-1/2 | | 1.22x+3.4=0.4+4.63 | | -5/8+v=1/4-5/8 | | 23=5+6x | | 4(a-2)+a=4a-2 | | 2n-13=-7n-4n | | 4(a-2)+a=2a-2 | | 4(a-2)+a=8a-8 | | p+40=3p | | x²+6x=-5. | | -5=x+3/8 | | 4(a-2)+a=3a-1 | | 4(a-2)+a=3 | | 4(a-2)+a=2a-1 | | 1+3a=-14+6a | | 3/4=y/14 | | 4(a-2)+a=1a-1 | | x+12/9=2 | | p+75=6p | | r-2(3-2r)=2r+9 | | 2+3c=5.70 | | x12=-8 | | 30=1.5x+9 | | 2c+3=5.70 | | 18-4n=3 | | 18-4nn=3 | | 3(2t+1)=35 | | 5x-3=3x–1 | | 64=6x-56 | | 2x–1–1=x–3–(-5+x) |